atomic structure

atomic structure

Heisenberg Proposed the Uncertainty Principle for Behavior of
Electrons
Werner Heisenberg proposed what’s known as the Heisenberg Uncertainty Principle. According to the Heisenberg Uncertainty Principle, it is impossible to measure certain properties, like momentum (speed multiplied by mass) and position at the same time without introducing uncertainty into the measurement. Of course, if you can’t make accurate measurements, you can’t make accurate prediction either.
According to the Heisenberg Uncertainty Principle, there is a fundamental limit to how much we can know and how accurately we can know it. It’s as if there is ‘something’ in the universe which prevents us from being able to make absolutely, one hundred percent accurate measurements and, as a result, we will always be plagued by some uncertainty. For large objects, like baseballs and planets, the uncertainty is just too small to matter, but for tiny things, like atoms and electrons, the uncertainty becomes important
Impossible to Fix Both the Position of an Electron and Its Momentum
So how does the Heisenberg Uncertainty Principle relate to the electron and all the problems scientists have interpreting the electron wave function? Well, if you think about it logically, the Heisenberg Uncertainty Principle basically means that it’s impossible to predict both exactly what the electron will do or exactly where the electron will be found. Suppose, for instance, that you know the electron’s precise position, then according to the Heisenberg Uncertainty Principle, you can’t know its precise momentum as well. In other words, when you know where the electron is, you don’t know where it’s going (since where it’s going is determined by the velocity component of its moment). Suppose, on the other hand, that you know the electron’s precise momentum.
According to the Heisenberg Uncertainty Principle, you can’t know its precise position as well. In other words, when you know where the electron is going, you don’t know where it is.
Obviously, there is always some uncertainty when it comes to electrons. You either don’t know where they are, or else you don’t know where they’re going. As a result, any theory that claimed to predict exactly where the electron was, or exactly which path it would take as it traveled around inside the atom would go against the Heisenberg Uncertainty Principle. Luckily, the wave function description doesn’t claim to predict the precise behavior of the electron. Instead, it only makes statements about the probability of finding the electron at one place or anoth

Is this the question you were looking for? If so, place your order here to get started!